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The importance of scale and polarization of the atomic basis set for LCAO calculations of the 
intensities of electronic transitions is investigated using the molecular hydrogen ion, H~-, as a model. 
The transitions under consideration are the 1% - lcr,, the lnu - 1% and the lag - In u excitations of 
this ion, and the electric dipole transition moments are calculated for a range of nuclear separations 
using the dipole length, the dipole velocity, the dipole acceleration and the time-derivative of the 
dipole acceleration formulations. For the l a g - l a  u and the I n , - 1 %  excitations scaling and/or 
polarization are found very efficient for the improvement of the calculated transition moments for 
small internuclear separations for all the dipole formulations, whereas only the dipole length and the 
dipole velocity results are well-behaved for large separations. For the 1% - ln ,  excitation scaling is 
found to be more important than polarization for all internuclear separations. 

Die Bedeutung der Skalierung und der Polarisation atomarer Basisfunktionen fiir LCAO- 
Berechnungen der Intensit~iten elektronischer Uberg~inge wird am Wasserstoffmolekiilion, H~-, als 
Modell untersucht. Die betrachteten Oberg~inge sind der l a g -  lau, der lnu - 1% und der l a g -  lnu- 
~bergang dieses Ions. Die zugehfrigen Dipoliibergangsmomente werden fiir eine Reihe von Kern- 
abstgnden berechnet, wobei die Dipollgnge, die Dipolgeschwindigkeit, die Dipolbeschleunigung und 
die zeitliche Ableitung der Dipolbeschleunigung zu Grunde gelegt werden. Fiir die l a g -  lcru und die 
ln~-= 1%-Anregung findet man, dab Skalierung und/oder Polarisation sehr wirksam fiir eine Ver- 
besserung der berechneten ~bergangsmomente bei kleinen Kernabst~inden sind. Dies gilt f/Jr alle 
Dipolformulierungen, w~ihrend sich fiir groge Kernabst~inde nur die Dipoll~inge und die Dipol- 
geschwindigkeit richtig verhalten. Fiir den l a g -  lnu-Obergang ist die Skalierung bei allen Kern- 
abstgnden wichtiger als die Polarisation. 

Etude de l'influence de l'6chelle et de la polarisation de la base atomique sur les calculs LCAO des 
intensit6s des transitions 61ectroniques, en utilisant l'ion mol6culaire H + comme module. On consid~re 
les transitions 1 ag - 1 au, 1 n u - 1 ng et 1 ag - 1 n,; les moments dipolaires de transition sont calculus pour un 
6ventail de s6parations nucl6aires en utilisant les diff6rentes formulations: longueur dipolaire, vitesse 
dipolaire, acceleration dipolaire et d6riv6e par rapport au temps de l'acc616ration dipolaire. Pour les 
excitations 1 ag - 1 a, et 1 n u - 1 ng les facteurs pr6cit6s ont une grande importance pour l'am61ioration 
des moments de transition calcul6s ~t faible s6paration nucl6aire dans toutes les formulations, alors 
qu'~t grande s6paration nucl6aire seules la longueur et la vitesse donnent des r6sultats convenables. 
Pour l'excitation 1% - 1 n u l'6chelle est un facteur plus important que la polarisation ~t routes distances 
internucl6aires. 
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1. Introduction 

The linear combination of atomic orbitals (LCAO) molecular orbital approxi- 
mation forms a time-honoured basis for the calculation of molecular electronic 
energies and wave functions, but the calculation of the intensities of electronic 
transitions from such wave functions has met with mainly qualitative, rather 
than quantitative, success. Basically, this can be blamed on two features of 
theoretical intensity calculations. Firstly, the operators associated with the 
various equivalent formulations [1-3] of the theoretical intensity are all un- 
bound [4, 5]. Therefore, minor, in principle even infinitesimal, inaccuracies in 
the wave functions may lead to large errors in computed results. Secondly, these 
operators emphasize different aspects of the wave functions [6, 7], so that they 
generally yield rather different results for the predicted intensity of a particular 
transition when approximate wave functions are used. However, these statements 
are so general that they provide little direct clue to the reason for the quanti- 
tatively unsatisfactory results which are often obtained when LCAO wave 
functions are used as basis for electronic intensity calculations. 

The influence of correlation effects on the calculation of electronic intensities 
has been the subject of a number of recent publications (see Refs. [8-11] and refer- 
ences therein) and the importance of ground state correlation, in particular, is firmly 
established. In the present communication we shall study another aspect of the 
LCAO calculation of intensities, namely, the importance of choosing the proper 
scale and polarization for the atomic orbitals which form the basis for LCAO 
wave functions. As our model we take the simplest molecular electronic system, 
the molecular hydrogen ion, H~-, thereby avoiding the complications of corre- 
lation effects, and the transitions under consideration are the 1 % -  lau, the 
ln, - lng and the 1% - in u excitations of this ion. 

In order to investigate the effect of scale and polarization for the intensities 
of these transitions we compare the results of calculations in which the LCAO 
functions are built from three different types of atomic orbitals. These three 
types of orbitals are: simple Slater orbitals, scaled Slater orbitals and scaled and 
polarized Slater orbitals, respectively. The wave functions necessary for these 
calculations are available in the work of Miller and Lykos [12] who reported 
individual variational optimisations of the relevant orbitals. The pertinent 
details and notations for the wave functions are summarized in Sect. 2. The 
intensities are calculated using four equivalent formulations of the electric dipole 
transition moment, viz. the ones referred as the dipole length, the dipole velocity, 
the dipole acceleration and the time-derivative of the dipole acceleration [2, 3] 
expressions. All calculations are carried out at a number of different internuclear 
separations, and the results are compared with the very accurate values obtained 
by Bates et al. [13, 14]. In this way, the present calculations illustrate how well 
the results of the individual dipole formulations can be brought to converge 
towards the correct results by the type of systematic improvements in the basis 
orbitals, which are considered here. 

Molecular orbital calculations of the intensities of transitions in the mole- 
cular hydrogen ion, as function of the internuclear separation, have been reported 
previously by Bates et al. [13, 14] and by Lamb, Young, and LaPaglia [17]. 
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We shall return to a comparison with their results in Sect. 4. A set of model 
calculations were reported recently by Danz and Harris [25], who approximated 
the molecular potential by a double square well. In their calculations, which 
differ from the present by the use of approximate transition energies, these 
authors compare the exact intensities for the truiiaitions in the double well 
potential with the results of a molecular orbital analogy, in which the wave 
functions are linear combinations of the solutions for the separate wells. Their 
model includes a polarization-like effect for the wave functions and they do not 
observe any significant improvements in the intensities of the lag ~ la ,  analogous 
excitation, in marked contrast to the present findings. 

The plan of the paper is the following. We summarize the features of the 
wave functions in Sect. 2, and the general expression for the various dipole 
formulations of the intensity are given in Sect. 3, the details concerning the 
operators being referred to Appendix 1. The results are presented and discussed 
in Sect. 4, and Sect. 5 contains concluding remarks: Finally the computational 
details are given in Appendix 2. 

2. Wave Functions 

The LCAO molecular orbital wave functions which are used as the basis for 
the present calculations are those reported by Miller and Lykos [12]. We shall 
briefly summarize the pertinent features of these functions and refer to the paper 
by Miller and Lykos for the detailed presentation. The molecular orbitals for 
the four states la  o, la . ,  lrc., and In o can be written 

a = N+ [a,(~) + O'b(~)] , . (1 a) 

g = n'+ [~a(~') - nb(~')] (1 b) 

where the plus combination corresponds to the gerade state in the a-orbitals, 
Eq. (la), and to the ungerade state in the rc-orbitals, Eq. (lb). The atomic 
orbitals on atom a are of the form: 

0".(4) = cl ls.(~) + C 2 2pa,(~), (2a) 
t t n,(~') = c] 2pn~(~') + c 2 3dn,(~ ),  (2b) 

and similar expressions hold for the orbitats on atom b. 
We shall use three different levels of complexity for the atomic orbitals. 

These are respectively, 
1) primitive orbitals: 

c l = c ~ = l  ; 

2) scaled orbitals: 

c l = c ' l = l ;  c2 
and 

3) polarized orbitals: 

C 2 = C 2 = 0 ; ~ = 1.0 ; 0.50, 

= c~ = 0 ; ~ and ~' variationally optimized, 

C r all parameters (c l, c2, ~ )  and ( l, c~, ~') variationally optimized. 
21" 
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All the parameters required for these functions are given for a range of inter- 
nuclear separation by Miller and Lykos [12]. In their terminology the scaled 
function 2, and the polarized functions, 3, are referred to as one- and two- 
parameter functions respectively. 

In addition to the functions 1, 2, and 3 Miller and Lykos included "charge 
deformed" atomic orbitals. For the a-type functions, Eq. (2a), this amounts to 
the addition of a 3da(~) atomic orbital. An estimate of the influence of this 
additional distortion is included in Sect. 4. 

3. Matrix Elements for the Electric Dipole Transition Moment 

The ordinary intensity of a transition between electronic states k and l is 
proportional to the square of the so-called electric dipole transition moment, 
Q(k, 1). Here we shall compare the results of four of the equivalent expressions 
for Q(k, 1), the respective z-components of which can be written (in atomic units) as 

dipole length: 

Q](k,l)=(~PklZl~t'~) ; (z), (3) 

dipole velocity: 

Q2(,/)  (Et-Ek) -x 7tk ~t (Z), (4) 

dipole acceleration: 

QZa(k,l)=(Et-Ek)-2(~t k ~---~V(r) ~P~) ; (s (5) 

and time-derivative of dipole acceleration [2, 3, 15] 

Q~(k,l)=(Ez-G)-a(~kld~l,l,,;>; (y), (6a) 
where 

1 
~-~ (div grad V(r)) (6b) O~4= ( ~--~grad V(r))'V+-~ 

with similar expressions for the x- and y-components. In these equations ~Pk and 
~ are the time-independent electronic wave functions and Ek and E~ are the 
energies for the two states. V(r) is the static potential energy of the electron, and 
the symbols (z), (~) etc. are used as labels in the tables of results in Sect. 4. 
(x), (~) etc. are similarly used to label the results for x-axis polarized excitations. 

The explicit form of the operators in Eqs. (3)-(6) are given in Appendix 1. The 
operator in the matrix element in Eq. (6) contains high derivatives of the potential 
which, for the conventional point nuclei coulomb potential, leads to the 
operator [2,3, 151 being non-(anti)hermitean a. We have shown recently [15] 

1 Since we are working with transition moment  operators on real form the operators in Eqs. (4) 
and (6) are antihermitean rather that hermitean. The operator 04without ~-function contributions is 
therefore, in fact, non-antihermetian. 



Calculations of Electronic Intensities 307 

for a single center coulomb potential, that the (anti)hermitean character can be 
restored if suitable f-functions and f-function derivatives are introduced by 
means of a cut-off in the potential. An analogous procedure can be applied in the 
case of the two-center coulomb potential in H~-. The details of this are given in 
Appendix 1, where it is also shown that the operator in Eq. (5), which again 
depends explicitly upon the potential, is for all practical purposes unaffected by 
the cut-off. The f-function terms which are introduced into the operator (6b) 
contribute to the calculations of the dipole transition moments for the l tr  o - l a  u 

and the l a  o -  lnu  excitations, for which one or both of the orbitals have finite 
densities at the nuclei. The importance of these 6-function contributions is illus- 
trated by some representative examples in Appendix 2. 

4. Results 

The results of the present calculations of the electric dipole transition 
moments of the h r  o - l a , , ,  the l n u -  i n  o and the l tr  o - i n , ,  excitations in the 
molecular hydrogen ion are given in Tables 1, 2, and 3 for a range of values of the 
internuclear separation R. In all cases the transition energies which are required 
in Eqs. (4, 5, 6) are the accurate energy differences taken from the work of Bates, 

Table 1. Dipole transition moment for the l a g -  la u excitation a 

R b Wave functions c 

primitive scaled polarized accurate d 

1.0 

2.0 

4.0 

6.0 

8.0 

z 0.975 0.724 0.665 0.674 
0.539 0.617 0.624 
0.801 0.713 0.683 

2" 0.839 1.03 0.813 

z 1.23 1.17 1.04 1.05 
0.768 0.855 1.04 
1.24 1.33 0.987 

- 0.912 0.507 0.905 

z 2.16 2.03 1.88 1.88 
1.24 1.20 1.86 
6.63 6.24 1.19 

2" -27.5  -26 .7  9.14 

z 3.15 3.00 2.89 2.86 
1.63 1.61 2.83 

64.1 60.8 12.7 
2" - 507 - 543 209 

z 4.00 4.00 3.93 3.85 
2.03 2.03 3.71 

991 990 - 300 

a All values in a.u. 
b See Sect. 3 for the notat ion used for the dipole formulations. 
~ See Sect. 2 for the notat ion used for the wave functions. 
a Calculated from the intensities given in Ref. [13]. 
e These results could not be obtained with any numerical significance. 
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Table 2. Dipole transit ion moment  f o r  the 1 ~  - 1~ o exci tat ion a 

R b Wave functions c 

primitive scaled polarized accurate d 

2.0 

4.0 

6.0 

8.0 

z 2.38 1.55 1.39 
1.01 1.32 1.45 
1.26 1,57 1.43 
1.34 0.985 1.46 

z 2.78 2.43 t.97 
1.36 1.57 2.02 
2.08 2.49 1.95 

2" 1.07 0.304 2.07 

z 3.40 3.27 2.62 
1.70 1.70 2.6t 
3.78 4.20 2.60 

F 0.275 -0.912 2.95 

z 4.16 4.12 3,39 
1.97 1.82 3.25 
7.42 7.76 3.21 

- 2,62 - 3.94 5.68 

1.42 

2.00 

a All values in a.u. 
b See Sect. 3 for the notation used for the dipole formulations. 
~ See Sect. 2 for the notation used for the wave functions. 
d Calculated from the intensities given in Ref. [14]. 

Ledsham, and Stewart [16], and the details about the evaluation of the matrix 
elements are given in Appendix 2. For comparison Tables 1, 2, and 3 include the 
values for the transition moments which can be deduced from the very accurate 
intensities calculated by Bates e t  al. [13, 14]. These authors, and more recently 
Lamb, Young, and LaPaglia 1-17], have also reported calculations of the 
transition moments of these excitations in the dipole length and the dipole 
velocity formulations using simple, unscaled Slater orbitals. Wherever direct 
comparison is possible, our results labelled primitive agree with the values given 
previously. In addition to calculations based upon unscaled Slater orbitals 
Lamb, Young, and LaPaglia [17] performed a series of dipole length and dipole 
velocity intensity calculations using Gaussian type orbitals. In these calculations 
a certain degree of polarization was introduced by placing a single Gaussian 
orbital in the middle of the molecule. For small internuclear separations their 
results are quite similar to our results with polarized Slater type orbitals, 
whereas for larger separations their results resemble the ones obtained with 
unscaled Slater type orbitals. 

The l a  o - l a u  and the 1re u - 17rg transitions, Tables 1 and 2, both belong to 
the class of parallel polarized excitations which Mulliken [18] named charge- 
transfer excitations, and the two tables show the same qualitative features. (In 
comparing the two tables it should be observed that the n-orbitals are much 
more extended in space than are the a-orbitals so that, for example, a distance R 
of 8 a.u., which is considered a large separation for the l a g -  lau transition, is, 
in fact, a physically small to intermediate separation for the 1re,,- lrcg transition.) 
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Considering first the results for the primitive orbitals for these charge-transfer 
transitions, Tables 1 and 2 show that all the dipole formulations lead to results 
of the right order of magnitude for small internuclear separations. For larger 
values of R, only the dipole length results converge towards the correct values, 
while the dipole velocity results converge towards half the correct values [13]. 
The results from the two remaining dipole formulations are quite unacceptable 
for larger R. In fact, it can be shown that for the primitive orbitals and for large 
separations the transition moment in the dipole acceleration formulation becomes 
proportional to exp(2R) multiplied by R -4. The results obtained with scaled 
orbitals show that scaling is rather effective at small R for the dipole length and 
the dipole velocity formulations, but has negligible influence at large internuclear 
separations, as might have been expected. With scaled and polarized orbitals we 
obtain good agreement, for the whole range of separations, between the correct 
results and those obtained in the dipole length and the dipole velocity formu- 
lations. The polarized orbitals also lead to considerable improvements in the 
results from the dipole acceleration and the time derivative of the dipole 
acceleration formulations for small values of R, but the transition moments 
obtained at large R are still unacceptable. 

Turning to the perpendicularly polarized excitations l a g -  lrc u, Table 3, we 
observe firstly that all the dipole formulations lead to results of the right order 
of magnitude for the whole range of internuclear separations. This feature can 
be ascribed to the fact that the dipole transition moment for this excitation is 
largely dominated by the one-center contribution arising from the allowed 

Table 3. Dipole transition moment for the l a g -  in u excitation a 

R b Wave functions ~ 

primitive scaled polarized accurate d 

2.0 x 0.783 0.733 0.768 0.726 
0.422 0.716 0.704 

5/ 0.317 0.730 0.743 
0.125 1.01 1.03 

4.0 x 0.794 0.930 0.938 0.885 
:~ 0.631 0.867 0.875 
5/ 0.546 0.945 0.949 
5~ 0.289 1.62 0.803 

6.0 x 0.761 0.880 0.892 
:~ 0.709 0.874 0.872 
5/ 0.674 0.957 0.945 

0.507 1.50 0.865 

8.0 x 0.734 0.802 0.794 
9~ 0.724 0.817 0.800 
5d 0.719 0.874 0.853 

0.669 1.15 1.18 

a All values in a.u. 
b See Sect. 3 for the notation used for the dipole formulations. 
c See Sect. 2 for the notation used for the wave functions. 
d Calculated from the intensities given in Ref. [14]. 
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ls - 2p atomic transition. It is further observed that, except for the fourth dipole 
formulation (Eq. (6)), scaling appears quite efficient as a means of improving the 
calculated transition moments, while polarization of the orbitals leads to only 
minor corrections. This again appears reasonable in view of the importance of 
the one-center contributions to the intensity. 

The unsatisfactory results which are obtained from the dipole acceleration 
and the time-derivative of the dipole acceleration transition moments for the 
charge-transfer excitations at large separation suggest the possibility that higher 
order distortions of the atomic orbital basis are required. However, calculation 
of the dipole acceleration transition moment for the l a g -  lau excitation for an R 
of 8 a.u. using the charge-deformed orbitals given by Miller and Lykos 1-12] shows 
no improvement over the value given in Table 1 for the polarized orbitals. On 
the contrary, we calculate a value of -406 a.u., to be compared to -300a.u. 
(Table 1), so that charge-deformation, in the sense employed by Miller and 
Lykos [12], does not appear to introduce the type of change necessary for these 
transition moment calculations. 

5. Concluding Remarks 

Tables 1, 2, and 3 provide ample illustration of the statements in the intro- 
duction concerning the general features of electronic intensity calculations. 
Clearly, at large internuclear separations the wave functions involved in the 
calculation of the charge-transfer intensities differ only infinitesimally from the 
exact wave functions, and yet some of the dipole formulations lead to totally 
erroneous results. Even the quite accurate polarized wave functions do not 
yield reliable results for two of the dipole formulations, and, as mentioned in 
Sect. 4, the more accurate charge-deformed orbitals actually lead to worse results. 

It also emerges that the results from the dipole length and the dipole velocity 
formulation are more well behaved than are those from the other two dipole 
formulations. The same grouping has been found by Chong [19] in a comparison 
of the results from the four dipole formulations for some transition involving 
states with non-vanishing angular momenta in the He-like isoelectronic series. 

The implication of the present results is that the search for appropriate atomic 
basis functions for LCAO calculations of electronic intensities must allow some 
degree of individual optimisation for the states involved in the pertinent 
transitions. More specifically, only the dipole length and the dipole velocity 
formulations appear to provide reasonably reliable results for "economy size" 
atomic orbital basis functions, and for these two formulations individual scaling 
is rather efficient at small internuclear distances. Polarization effects must be 
invoked for the dipole velocity transition moment in the case of charge-transfer 
excitations at large distances. 

Appendix 1 

The operators for the matrix elements in the dipole length and the dipole 
velocity expressions, Eqs. (3) and (4), Sect. 3, are 

O~ = O] (a) = z,, = z b + R = O] (b) + R, (I: 1 a) 

d7 = dT (a) = Xa = Xb = 6~ (b) , (I: ab) 
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and 

~ z _ d ~ ( a ) _  O g = d~(b), (I:2a) 0 2 -  ~z~ - ~z b 

- ~ =6~(b ) ,  (I:2b) 6~ = 6~(a) - c3x, ~xb 

where R is the internuclear separation and where the local coordinate systems 
on atoms a and b are right-handed with z-axes along the internuclear axis. 
Atomic units are used throughout. Using the conventional point nuclei potential 

1 1 
v -  (1:3) 

r a r b 

the operators for the dipole acceleration expression, Eq. (5), become: 

d~ = ~ v  = fit(a) + d~(b), (I:4a) 
~z 

where 
d~(a)=  COS0a. d~(b)= cos0b 

2 (I:4b) 
r a  /.2 

a n d  

0 ~ -  ~ OoxV = (}~ (a) + 6~ (b) , (I: 5 a) 
where 

O~(a)-- sinO. cos~o . O~(b) -  sinObCOS~O 
r~ ' r2 (I: 5 b) 

It is shown at the end of this appendix that the complications resulting from the 
6-function contributions, which are considered in the following, are of no 
practical significance in the operator (I:4, 5). 

The operator appropriate to the fourth dipole expression, the time derivative 
of the dipole acceleration formulation, is, according to Eq. (6b), 

OJ = dj,1 + d~,2 (1:6) 
with 

O J , , l = ( f - ~ g r a d V ( r ) ) . ~  z (I:7a) 

and 

0~,2 = 1 0 (divgradV(r)) (I:7b) 
2 0z 

for a z-axis polarized excitation. The operator for x-polarized excitations is 
obtained by substituting x for z in Eqs. (I:6, 7). 

In the hydrogen molecular ion the potential is a sum of two terms 

V =  I1.+ V b , (I:8) 

11. and Vb representing the potentials due to two nuclei a and b respectively. The 
operators Eqs. (I:7) can then be written: 

0~,1 = O~,l(a) + O~,l(b) (I:9a) 
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and 

with 

and 

0~,2 = O~,2(a) + O~,2(b), (I:9b) 

O~t,l (a)= ( ~  grad~ V,)" ~ (I: 10a) 

0~,2(a ) = 1 ~ (div a grada I1,). (I: 10b) 
2 8z, 

Corresponding expressions result for the operators associated with nucleus b. 
As discussed in Refs. [2, 3, 15] the point nucleus potential Eq. 0:3) leads to 

the operator 0:6) having non-(anti)hermitean character with respect to states 
with non-vanishing density at the nuclei. Consistent with our work on the single 
center coulomb potential [15] we shall use the modified potentials 

1 
V a - h(r , -e);  V b = - ~--h(rb-- 0 (I:11) 

ra r b 

where h(r-~) is the Heaviside unit function whose derivative is the Dirac 
6-function 6(r-e) [20]. The operators corresponding to (I:10a, b) are now 
obtained by inserting the potentials (I: 11) and taking the limit e going to zero. 
The resulting expressions are: 

1 j 
dJ, l(a)= - ~ + 5(r . ) -  --6'(r.) cOSOaSinOaCOSq)-~X" 

ra  r a 

[ 3 3  1 ] 0 (I:12a) + - .3-ra + ~.2r. ~(ra) - --r. 6'(r.) cosO. sinO. sinq) Oya 

+ - - W +  .~-6(r.) (3 coseO.-1) 6 ' ( r ~ ) - - ;  
ra ra ra 63 Z a 

and 

1 
(I:12b) 

with analogous expressions for the operators on atom b. The corresponding 
operator for x-axis polarized excitations are: 

3 2 - -  ~- sin20a cos2~o +-~- (3 C O S 2 0 a  - -  1) 
' ra  r a 

sin20, cos2~o 6,(r.)] 
ra ] ~ X  a 

+ [ -  ( ~  + ~-2 6(ra)) 3~- sin 20. sin 2q~ sin20a sin 2~~ fi'(ra)] ~3Yad (I: 13a) 

1 / 1 + - ~ + 5(r . ) -  --5'(r~) cosO. sinO. coscp ~z. ' 
ra  r a 
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and 

O~,z(a)= l [~f 6'(ra) - -~  ~"(r,)] sinO, coscp . (I:13b) 

The end point g-functions are defined such that 

• 6(r) dr = 1, 
0 

and it is found in the actual calculations that most of the g-function derivatives 
in the operator (I:12, 13) can be converted into g-functions by use of the 
relation [21] 

m~ 
xn(~(m)(x)=(--1)n (m-n)! 6(m-")(x) ; m>n.  (1:14) 

We shall terminate this appendix by showing that the use of the modified 
potentials, Eq. (I: 11), has no practical consequence for the dipole acceleration 
operators, Eq. (I:4, 5), despite the fact that these operators depend explicitly 
upon the form of the electrostatic potential. Considering the operator 0~(a), 
Eq. (I:4b), we get: 

0 [1 1 6(r~)]cos0" (I:15) 
O~(a) ~- ~ Z  a V a = -~a2a Ya 

by inserting the potential (I: 11). However, any actual integration involving the 
6-function part of (I:15) can be carried out in spherical polar coordinates 
referred to the same nucleus as the operator. The angular integration is always 
convergent and the radial integration yields 

Ri ~. (3(ra) RjrZ. dra = ~ RiRjr . 6(r.) dr. (I: 16) 

where R i and Rj are the radial functions for the two orbitals involved. These 
orbitals may be situated on any nucleus in the system, including nucleus a, the 
only important feature of Ri and Rj being that they are both non-infinite every- 
where. We can therefore use the operator relation [:20] 

x ~(x)  = 0 

which makes the integral (I:16) vanish identically. We have therefore shown 
that for any one-, two- or three-center integral involving non-infinite orbitals 
the contributions from the 6-function in Eq. (I: 15) vanish identically. This then, 
is the justification for the neglect of the g-function terms in Eqs. (I:4, 5), which 
are in the form commonly quoted [1, 6, 7] for this formalism. 
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Appendix 2 

The matrix elements in the dipole transition moments in Eqs. (3)-(6) are 
reduced to matrix elements over single Slater type orbitals by inserting the 
wave functions Eqs. (1, 2). The resulting matrix elements are of one of the 
following three types: 

I=  (atO(a)la') , (II:1) 

II = (altg(b) la'),  (II:2) 

I I I=  (a[O(a) lb'),  (II:3) 

where a and a' are Slater type orbitals centered at atom a and O(/) is a transition 
moment operator referred to a coordinate system at atom i. The various 
pertinent operators 6(/) are discussed in Appendix 1. 

The purely one-center integrals, type I, are evaluated on closed form for all 
orbitals and operators. For the matrix elements II and III it is convenient to 
divide the operators into two groups: 

group 1: 6~(/), 6~(/), 6;(i), 6~(i) ; i= a, b, 

group 2: 6~(i), 6~(i), 6a~(/), 6,~(/) ; i =  a, b 

(see Eqs. (I: 1, 2) and (I: 12, 13)). Wherever a partial derivative appears in one of 
the operators, the differentiation is performed analytically and the resulting 
Slater orbital derivative is treated as a new orbital. 

Group 1 operators: 
Integrals of type II are calculated on closed form using the relations (I: 1, 2), 

whereas the integrals of type III are evaluated numerically by use of a modi- 
fication of a two-dimensional Gauss quadrature routine written by Johansen 
[22]. The integration uses a 32 times 32 points integration mesh with an over-all 
scale factor gauged by testing the normalisation of the orbitals. The accuracy 
was further tested by calculating a number of overlap integrals and comparing 
these with reliable sources. 

Group 2 operators: 
The integrals containing the a-function parts of the operators Og(/) and 

0,~(/) are calculated on closed form, whereas the integrals containing the remaining 
parts of these operators and the integrals over the operators 0~(/) and 0~(/) are 
expressed in terms of the integrals 

U = I Xa V[n(cOsOa) .t+l xbdv,  (II:4) 
ra 

P[~(COSOb) 
V =  ~ x,  r~b+ 1 x'~dv , (II:5) 

where xa and xb are Slater type orbitals. 
These U and V integrals are calculated by a modification of a routine 

written by J. P. DahL The expansions and computations in this routine are similar 
to methods described by Barnett [23] and Pitzer, Kern, and Lipscomb [24]. 
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The importance of the &function contributions in the calculation of the 
time-derivative of the dipole acceleration transition matrix elements is illustrated 
by the following set of values: 

( lagldYl 1~.> = 0.03801, 

(l~r,10111%) = -0.03818, 

(lo-gl 6,~- (6)1 l~z,) = 0.1117, 

(lzr, IO2- (6)1 lao) = 0.2776, 

where 0,~-(5) means 
5-function contributions. These values for the matrix elements are calculated 
for R equal to 2 a.u. using the primitive orbital basis set. In order to get the 
transition moment quoted in Table 3 the matrix element (II:6a) must be divided 
by the excitation energy to the third power. Eqs. (II:6a, b) show that the operator 
is properly (anti)hermitean and the agreement between the numerical values 
indicates the accuracy of the integration. The difference between the values in 
Eqs. (II:6) and Eqs. (1I:7) show clearly the non-trivial contribution of the 
&function parts of the operators. 

(II:6a) 

(II:6b) 

(II: 7a) 

(II:7b) 

the part of the operator 02 which does not contain 

Acknowledgement. The authors are grateful to Drs. J. P. Dahl and H. Johansen for the gifts of the 
computer routines mentioned in Appendix 2, and for numerous valuable discussions. The com- 
putations were carried out at the IBM 7094 installation at the Northern Europe University Computing 
Center (NEUCC) at Lundtofte, Denmark. We are grateful to the center for providing the com- 
putation time free of charge. 

References 

1. Bethe, H. A., Salpeter, E. E.: Quantum mechanics of one and two-electron atoms. Berlin- 
Gfttingen-Heidelberg: Springer 1957. 

2. Chen, J. C. Y.: J. chem. Physics 40, 615 (1964). 
3. Hansen, Aa. E.: Theoret. chim. Acta (Bed.) 16, 217 (1970). 
4. L6wdin, P. O.: Annu. Rev, physic. Chem. 11, 107 (1960). 
5. Bazley, N. W., Fox, D. W.: Rev. rood. Physics 35, 712 (1963). 
6. Chandrasekhar, S.: Astrophysic. J. 102, 223 (1945). 
7. Ehrenson, S., Philipson, P. E.: J. chem. Physics 34, 1224 (1961). 
8. LaPaglia, S. R., Sinano~lu, O.: J. chem. Physics, 44, 1888 (1966). 
9. Hansen, Aa. E.: Molecular Physics 13, 425 (1967). 

10. Harris, R. A.: J. chem. Physics 50, 3947 (1969). 
11. Kelly, H. P.: In: Adv. chem. Physics Vol. 14, ed. I. Prigogine. New York: Interscience Publishers 

1969. 
12. Miller, R. L., Lykos, P. G.: J. chem. Physics 37, 993 (1962). 
13. Bates, D. R.: J. chem. Physics 19, 1122 (1951). 
14. - -  Darling, R. T. S., Hawe, S. C., Stewart, A. L.: Proc. physic. Soc. (London) A 66, 1124 (1954). 
15. Hansen, Aa. E., Svendsen, E. Norby: Chem. Physics Letters 5, 483 (1970). 
16. Bates, D. R., Ledsham, K., Stewart, A. L.: Phil. Trans. Roy. Soc. 246, 215 (1953). 
17. Lamb, W., Young, R., LaPaglia, S. R.: J. chem. Physics 49, 2868 (1968). 
18. Mulliken, R. S.: J. chem. Physics 7, 20 (1939). 
19. Chong, D. P.: J. chem. Physics 48, 1413 (1968). 
20. Friedman, B.: Principles and techniques of applied mathematics. New York: Wiley 1956. 



316 Aa. E. Hansen and E. N. Svendsen: Calculations of Electronic Intensities 

21. Lighthill, M. J.: Introduction to fourier analysis and generalized functions. Cambridge: Cambridge 
University Press 1958. 

22. Johansen, H.: Algol programs for molecular calculations. Copenhagen: 1965. 
23. Barnett, M. P.: In: Methods in computational physics, Vol. 2, ed. S. Fernbach and M. Rotenberg. 

New York: Academic Press 1963. 
24. Pitzer, R. M., Kern, C. W., Lipscomb, W. N.: J, chem. Physics 37, 267 (1962). 
25. Danz, J., Harris, R. A.: J. chem. Physics 52, 5261 (1970). 

Dr. Aage E. Hansen 
Department of Physical Chemistry 
H. C. Orsted Institute 
Universitetsparken 5 
Kobenhavn O, Denmark 


